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We present a diagnostic tool to analyze the chaoticity of single degrees of freedom: the coherence angles,
which measure the angular distance between any physically relevant direction and the direction of maximum
expansion in the tangent space. They allow at the same time a detailed characterization and a synoptic view of
the dynamical behavior of a system with many degrees of freedom. Results are presented for two- and
three-dimensional Lennard-Jones lattices, which show a nontrivial structure of the spectrum of coherence

angles.
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The extended and variegated evidence for chaotic or or-
dered dynamical behavior in Hamiltonian systems has been
recently put under a comprehensive point of view through
the concept of strong stochasticity threshold (SST) [1,2]. The
SST separates in the phase space regions characterized by a
highly chaotic dynamics (Anosov-type diffusion) from re-
gions of highly ordered dynamics, where only a weak chaos
can be detected (Arnold-type diffusion). In the phase space
region where the transition from one regime to the other
takes place, detailed analysis of the dynamics shows that
different degrees of freedom (DOFs) in one and the same
state of the system may be characterized by very different
behaviors, ranging from chaotic to ordered [3,4]. This coex-
istence extends into the region of weak chaos, where a global
chaoticity—due to the presence of few chaotic DOFs—may
hide the existence of many other ordered DOFs. Is a similar
situation likely to be present also in the region of strong
chaos? Up to now little attention has been given to this prob-
lem, and anyway in systems with few DOFs. The reason is
that the usual indicators of order and chaos are either of
global nature (Lyapunov exponents, fractal dimension, spec-
tral entropy), or become soon impracticable when the num-
ber of DOFs becomes large (Poincaré maps, auto- and cross-
correlation functions).

In this paper we introduce a diagnostic tool which, while
being easily computable, allows a detailed dynamical char-
acterization of each DOF and, at the same time, a synoptic
description of the system as a whole. By means of this tool
the DOFs endowed with the highest chaoticity may be easily
singled out. We will show—taking as an example two- and
three-dimensional (2D and 3D) Lennard-Jones microcrystals
in a temperature range around the SST—that in a Hamil-
tonian system with many DOFs, chaos can be driven by few
of them even above the SST.

It is well known that a measure of the degree of chaoticity
of a dynamical system is the rate of divergence in the phase
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space of initially nearby trajectories, computed through the
Lyapunov exponents. We call coherence the characteristic of
trajectories with zero or low divergence, and we are inter-
ested in the coherence of single, physically relevant DOFs.
This property can be quantified—in the tangent space of the
dynamical system—through the average angle between the
direction corresponding in that space to each DOF, and the
direction corresponding to the maximum Lyapunov expo-
nent. These coherence angles turn out to be easily comput-
able and stable. Let ®: R™—R™ be a flow generated by the
set of differential equations x=f(x), xe R” (where R”
represents the phase space); the linear evolution of a generic
vector we TRy, the tangent space in x, is given by
m
of;
wilt)=2, % w;(1). (1)

j=1 0x;

Oseledec [5,6] proved that for almost all initial conditions
x(0) there is a base {&;} in TRy, such that

w(’)=,-=21 |w(0)|c,(£)&exp(X; 1) )

for large enough times. X1>X2>- . -Bf\m are the Lyapunov
exponents; the matrices ¢;(¢) entail a possible time depen-
dence weaker than the exponential one, and the rotation of
the base {€;} generated by the evolution equations (1). If
ANi>No>- - - >N, (s<m) are the s different values of the
set {X,-}, then from (2) it follows

w(t)=i=§:l a,(t)exp(\; 1)=b(t)exp(\; 1),

where a;(1)=Z;|w(0)|c;()e; for all j: Aj=\;, and
lim,_,.b(¢)=a;(¢) for almost all w(0). We imagine de-
composing the phase space R™ into n subspaces,
S1,85, ...,8, (n<m), corresponding to a set of DOFs
which are physically interesting for the study of the system.
For the sake of simplicity we suppose that they are orthogo-
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nal [7]. This phase space decomposition will induce an
analogous decomposition of the tangent space TR™ in n sub-
spaces 7S:,TS,,...,TS,. Now we define the coherence
angles (CAs) a'" through

0= w(e")|?
COS o hm '—(‘t——)P— dt’

where w(/)(¢) is the projection of w(¢) on T'S,. It is evident
that w(’)(t)—>a(ll)(t) exp(\; ?) for large times, where a(ll)(t) is
the projection of a;(¢) on T'S,. Only if a;(¢) were orthogo-
nal to TS;, one would have w(’)(t)—aa(l)(t)exp()\z t) for
large times. So we have that

(@

D=

cos?a 11m j Tay(¢’ )[
and each a'” represents an effective angle between the sub-
space TS; and the maximum expansion subspace. The TS,
are fixed; the maximum expansion subspace—to which
a,(¢) belongs—depends only on the phase space representa-
tive point and oscillates around its average orientation in

Ri(r) [8]. It follows that the computation of the CAs should
have a weak dependence on the initial conditions in tangent
space, that is on the choice of w(0). As =/_;cos?a®=1 we
define an average coherence angle a through cosa=1/ Jn.
Deviations of cosa{” from cosa will give a measure of the
chaoticity degree of each subspace 7'S; when compared with
the average value. Indeed, any DOF corresponding to a
cosa®>0 will asymptotically diverge with a rate given by
N\1. Nevertheless, it is important to characterize the level of
chaoticity of the DOFs in the medium time regime. By this
we mean a scale typical for the time needed by a generic
tangent vector to reorient in the direction of maximum ex-
pansion, that is a;. This regime is physically relevant, since
experiments (real, or on a computer) performed on this time
scale often detect phenomena due to differences of chaoticity
among the DOFs. In the medium time of a dynamical evo-
lution, each DOF will be characterized by an effective ex-
pansion rate, which will be a mixture of rates relative to all
Lyapunov exponents. For the DOFs characterized in the tan-
gent space by a small angle o” with the first Lyapunov
vector, this effective rate will be near to the maximum one;
in general, values of cosa” higher than cosa mean a higher
chaoticity than the average.

We have used the CAs to analyze the dynamics of simple
microcrystals, as an example of Hamiltonian systems with
many DOFs. The dynamical characterization of any con-
densed matter system has, as a preliminary step, the identi-
fication of a set of appropriate coordinates, i.e., coordinates
which are suitable to show up the peculiar phenomenology
due to the existence (and possible coexistence) of ordered
and chaotic dynamical regimes. For lattices a set of appro-
priate coordinates is already known to be that of the normal
modes, while the behavior of Cartesian atomic coordinates
does not exhibit a significant difference above and below the
SST. In the following, the DOFs taken into account will
therefore be the normal modes of a lattice. The subspaces
Si,...,S, corresponding to the normal modes are orthogo-
nal, as required.
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In order to allow comparison with previous work [3,4] we
have first chosen for the simulation a 2D system composed
of N? particles of mass M (N=8), arranged on a square
lattice with square cells of side d, surrounded by a border of
fixed particles. Each particle is bonded to the four first neigh-
bors by a Lennard-Jones (LJ) potential:

ror=ad (3]~

V(r) has its minimum at ry=2"g. Let us denote by x!
and y?m (I,m=1,8) the coordinates of site (/,m) and by
uj, e uj, the displacements of the particles from their

equilibrium positions. The normal-mode coordinates are de-
fined by

2 hwl kmm
D= N+1,% 2 uppsin| 7 |sin| 57
N

P 2_3_2 W sin h L sin f‘l”i
he N+ 1 ;2 ™ AN+ N+1)

where h,k=1,N. In these coordinates the Hamiltonian of the
system is

I
= '2—“2:1 [(@re)? + (03 (g5 >+ (ah)?

+(h) (g1 +H

where H' is the Hamiltonian of the coupling, which is neg-
ligible at sufficiently low energies, and wy, ,, )}, , are the
angular frequencies of the normal modes:

(@)= () )2=i KLsinz——-W h + K zsin® 2Tk
hk kh? M 2(N+1) 2(N+1)]
19V PV
=y, =7,

We have considered two different cases:

(i) d1=rg, which corresponds to zero pressure at zero
temperature. In this case Kr=0. There are only N distinct
frequencies (w};=w},=w,) ranging from 0.3789 to
2.1491 in LJ reduced units. The normal modes are naturally
divided into N groups, each including 2 N modes of equal
frequency. The total energy of the system may now be writ-
ten as the sum of the energies E, of each group of modes,
plus the energy of the coupling due to the H' term; one has

M ) )
E,= 7};} [(@h)*+ (@3q5) >+ (@h) >+ (whghn)?]

In this case, the eight group energies E, will be the relevant
DOFs. In fact, as described in [4], modes of equal frequency
rapidly exchange their energy, always providing a good en-
ergy partition inside the group; therefore, the energies of the
groups become the relevant DOFs.

(i) Compressing the system (d<r), one finds a critical
value of the cell side d below which some frequencies be-
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come imaginary, i.e., the corresponding modes become un-
stable. For our system (N=8) the critical value is
d,=0.969r,. We have compressed the system to a value
slightly above d. In this case there are N? distinct frequen-
cies wj;= w}, , ranging from 0.0658 to 8.4471. The relevant
DOFs are thus the 64 group energies, where each group en-
tails two modes:

_]E_vcz xx2+‘y2+yy2
Ehk“z[(qhk) + (0 @hi)“+ (@) “ + (0pn@in) ] -

We have used a central-differences algorithm for the nu-
merical integration of the equations of motion, improving the
standard algorithm by one order in the velocities. A descrip-
tion of this modified algorithm is given in [8]. We have ex-
plored the energy range e=0.2—0.002, where e is the en-
ergy per particle e=E/N?. For argon, this corresponds to
temperatures in the range 24—0.24 K, which includes the
transition region determined in [3,4] for the 64-particle sys-
tem. In this range we have studied the dynamics of the sys-
tem at the energy values e=0.2,0.05,0.02,0.007,0.002. The
total energy was initially distributed at random among all
particles; as a consequence it was distributed at random
among all normal modes.

We have computed the maximum Lyapunov exponent
N; vs energy e in both cases. In the first (uncompressed)
case, the curve showing In\; vs Ine is composed of two
straight segments with different slopes. The SST, located at
the point where the slope changes [1,2], is found around
e=0.02. The curve for the compressed system does not
show any change in slope. As the compressed system is more
anharmonic than the uncompressed one, the SST is expected
at a lower temperature; therefore, it must lie below the range
of energies studied here.

The CAs have been computed for different initial condi-
tions, either in tangent or in phase space, for all energies.
They show, as expected, a very weak sensitivity to tangent
space initial conditions: by lowering the energy e, the rela-
tive spread of their values increases from 107 ¢ at e=0.2 to
0.04 at e=0.002. In Fig. 1 the spectra of the CAs for the
zero-pressure system at e =0.002, 0.02, 0.2 are reported. The
normal modes groups are indexed in order of increasing fre-
quency. The spectrum in the weak chaoticity region
(e=0.002) exhibits a structure where group 1 has the lowest
CA, while groups 3 and 6 have the highest ones. This latter
result corresponds to the peculiar behavior of the same
groups found before [4]: the energies of groups 3 and 6 are
almost constant, because the energy exchanges of each of
them with all other groups are extremely small. On the other
hand, this confirms the meaning attributed to the CAs, from
which we can infer that groups 3 and 6 exhibit the least
chaotic behavior among all DOFs.

The spectrum at the SST (e=0.02) shows a monotonous
increase of coherence with the frequency of the normal
modes: at this energy groups 3 and 6 have lost their singular
behavior. Raising the energy well above the SST (e=0.2),
the various groups behave more similarly. But there is a fea-
ture common to the last two energies: the low frequency
group is the most chaotic, the high frequency group is the
most coherent. This seems to agree with an early intuition by
Rayleigh and Jeans, who speculated that the exchange of
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FIG. 1. Coherence angles for the uncompressed lattice at
e=0.002 (1), 0.02 (2), 0.2 (3). Each value is the average over three
different initial conditions in the tangent space. The lines connect-
ing the points are only an optical help. i is the index of the frequen-
cies, which increase with i.

energy of a DOF would occur over times growing exponen-
tially with its frequency; this guess has been later grounded
through a theorem by Nekhoroshev [9,10].

In Fig. 2 the CAs vs e below and above the SST for the
uncompressed lattice are reported: the spread of the a(”
around the average value a diminishes when the energy is
increased. Above the SST the CAs increase with the fre-
quency of the corresponding group, while below the SST
various crossovers take place. The smooth crossovers that
seem to occur near the highest e are not significant, because
at that energy the values of the CAs are affected by an un-
certainty of about +1°. So we could deduce that in the
whole strong chaoticity region the DOFs are endowed with a
degree of coherence which increases with their frequency—
as long as their CAs are distinguishable.

This deduction turns out not to be valid in general. This is
shown in Fig. 3, where the spectrum of the compressed lat-
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FIG. 2. Coherence angles for the uncompressed lattice vs e. The
horizontal line corresponds to the average angle «. Labels on
curves correspond to groups of different frequency. The arrow lo-
cates the SST.
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FIG. 3. Coherence spectrum for the compressed lattice at
e=0.002 (1), e=0.05 (2). i is the index of the frequencies, which
increase with i.

tice is reported, which gives a synoptic description of this
system with many DOFs. The two curves correspond to the
highest (e=0.05) and the lowest (e =0.002) energies stud-
ied. As said before, both energies should fall in the region of
strong chaos, above the SST. In this case the average angle is
a=83°. At ¢=0.002, groups 1-8, which originate from
group 1 at zero pressure, exhibit the lowest CAs, and the
highest frequency groups are the most coherent, as expected
[9,10]. But we found an unexpected high chaoticity of two
medium or high frequency packets of groups centered
around groups 40 and 56. At the higher energy the spectrum
flattens, showing an almost homogeneous degree of chaotic-
ity, again with the exception of the first eight groups. The
coherence angles show here that even in this highly chaotic
regime the different DOFs are characterized by different co-
herence levels. The high chaoticity of groups 40 and 56 may
be related to the fact that their frequencies are resonant
(within 0.4%) with the ratio 3/2.
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We have also computed the CAs for a 3D zero-pressure
system of N>=512 particles, and found that their values
were almost the same obtained for the 2D zero-pressure case
[11]. To explain this, one can suppose that the degree of
coherence of each group of normal modes—and hence the
values of the CAs—should depend (for a given frequency)
on the ratio between the number of coupling terms within
each group of modes and the total number of coupling terms
between the modes of one group and all others. The differ-
ence between the 2D and 3D zero-pressure cases of this ratio
is only of the order of one per thousand [8]; of course this is
only a quantitative hint, and this result deserves further in-
vestigation.

Let us make a final comment. In the last decade computer
experiments have progressed towards the simulation of real
systems with a large number of DOFs, while the main ef-
fort in the field of deterministic chaos has been devoted to
low-dimensional and/or nonphysical systems. Up to now,
therefore, there has been little cross-fertilization between
these two fields. Nevertheless, when simulating a real sys-
tem, one should also try to ascertain that the simulated sys-
tem is endowed with the expected dynamical properties. In
molecular dynamics computer experiments, for example,
equilibrium time averages are assumed to be equivalent to
ensemble averages. This is true if all DOFs behave chaoti-
cally, and in a similar way: this secures that the results are
statistically meaningful, and do not depend on the initial
state of the simulation. While the global indicators men-
tioned in the first paragraph do not give this information, the
diagnostic tool presented here allows one to check easily
how well this condition is met, also in systems with many
DOFs.
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